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6.1 Introduction

Optimal growth models have originally been developed in order to analyze the
long-run implications of capital accumulation and technological progress. Later
on, however, it has been noticed that essentially the same model structure can
also be used to shed light on short-run phenomena like the business cycle. The
most prominent outcome of this line of research are real-business-cycle (RBC)
theories, which assume that business cycles are triggered by exogenous stochas-
tic shocks and which analyze the mechanisms by which these shocks propagate
through the economy. The literature surveyed in the present chapter, on the
other hand, shows that optimal growth models can generate business cycles
even in the absence of exogenous shocks. It is therefore appropriate to refer
to these results as endogenous-business-cycle (EBC) theories. An important
property common to both RBC and EBC theories is that the business cycles
qualify as optimal programs. In other words, the solutions of both RBC and
EBC models are Pareto-efficient. As far as the deterministic EBC models are
concerned, the most important implication of this fact is that the standard
assumptions of optimal growth theory do not rule out intrinsic instability of
the economy, an instability that allows for periodic or even chaotic optimal
programs.

Following Ramsey (1928), much of the earlier literature in optimal growth
theory focused on equal treatment of generations over time, and therefore on
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the undiscounted case. The analysis of this class of models was brought to ma-
turity in the papers of Gale (1967), McKenzie (1968), and Brock (1970). The
treatment of the case in which future utilities were discounted was typically
done in the one-sector neoclassical model, where the significant difference be-
tween the two cases was not revealed because of the one-to-one conversion of
capital to consumption good implicit in its formulation. It was with the ex-
amples of Kurz (1968) and Sutherland (1970), in models which did not have
this feature, that one recognized that discounting the future in general pro-
vided more limited intertemporal arbitrage opportunities; thus, the standard
argument for smoothing out cyclical behavior was not valid in such frameworks.

Samuelson (1973) can be considered to provide definitive directions for re-
search towards an understanding of such a phenomenon. On the one hand, he
reported an example, due to Weitzman, which showed that cyclical optimal
behavior was consistent with interior solutions to Ramsey-Euler equations and
therefore would not disappear with assumptions which ruled out boundary so-
lutions to optimal growth problems. On the other hand, he conjectured that,
if the utility function was strictly concave, then cyclical optimal behavior of
the Weitzman type would not arise, if the planner was sufficiently patient. The
second idea was formalized in terms of turnpike theorems for low discount rates
in a Journal of Economic Theory symposium of 1976, and led to a literature
which is comprehensively surveyed in McKenzie (1986). The first idea led Ben-
habib and Nishimura (1985) to initiate a systematic investigation of the sources
of optimal cycles and this, in turn, led to the literature that is surveyed in this
chapter.

Section 6.2 sets the stage for our survey by presenting background mate-
rial on dynamical systems and optimal growth models. Sections 6.3 and 6.4
form the main part of the chapter. In section 6.3 we study the optimality of
periodic cycles. Although periodic optimal growth paths cannot be interpreted
as realistic business cycles, the characterization of the conditions under which
periodic cycles are optimal allows important insights into the mechanisms that
can generate non-monotonic optimal growth paths. Section 6.4 then turns to
chaotic optimal growth paths. These solutions resemble actual business cycles
more closely than periodic ones, but it is somewhat harder to characterize the
mechanisms by which they are generated.

6.2 Basic Definitions and Results

This section presents some background material that is necessary to state the
main results on optimal cycles and chaos. First we discuss a number of concepts
and results that are related to cyclical and chaotic behavior of dynamical sys-
tems. Then we formulate the reduced form optimal growth model and show that
it encompasses, among other models, a discrete-time version of the two-sector
model of Uzawa (1964).
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6.2.1 Dynamical Systems

Let X be a non-empty set and let h be a map from X to X . The pair (X,h) is
called a dynamical system. We refer to X as the state space and to h as the law
of motion of the dynamical system. Thus, if xt ∈ X is the state of the system
in time period t (where t = 0, 1, 2, . . .), then xt+1 = h(xt) ∈ X is the state
of the system in time period t + 1. We write h(0)(x) = x and, for any integer
t ≥ 1, h(t)(x) = h(h(t−1)(x)). If x ∈ X , the sequence τ(x) = (h(t)(x))∞t=0 is
called the trajectory from (the initial condition) x. The orbit from x is the set
ω(x) = {y | y = h(t)(x) for some t ≥ 0}.

A point x ∈ X is a fixed point of the dynamical system (X,h), if h(x) = x.
A point x ∈ X is called a periodic point of (X,h), if there is p ≥ 1 such that
h(p)(x) = x. The smallest such p is called the period of x. In particular, if x ∈ X
is a fixed point of (X,h), then it is periodic with period 1.

Throughout this chapter we assume that X is a non-empty and compact
interval on the real line R. In this case, it makes sense to describe the asymptotic
behavior of a trajectory from x by its limit set , which is defined as the set of
all limit points of τ(x). The limit set of x is denoted by ω+(x). Note that, if
x̂ ∈ X is a periodic point, then ω+(h(t)(x̂)) = ω(x̂) for every t = 0, 1, 2, . . .. A
periodic point x̂ is said to be locally stable, if there is an open interval I ⊆ X
containing x̂ such that ω+(x) = ω(x̂) for all x ∈ I. In this case we also say that
the periodic orbit ω(x̂) is locally stable. If h is continuously differentiable on
X and x̂ is a periodic point of period p, then a sufficient condition for x̂ to be
locally stable is that

∣∣Dh(p)(x̂)
∣∣ < 1. If

∣∣Dh(p)(x̂)
∣∣ > 1, then x̂ is not locally

stable. A periodic point x̂ is said to be globally stable (almost globally stable),
if ω+(x) = ω(x̂) holds for all (almost all) initial points x ∈ X .

Suppose that the law of motion h is a non-decreasing function. Obviously,
this implies that the trajectory τ(x) is a monotonic sequence for every x ∈ X .
Because X is compact, this sequence must have a unique limit point. It follows
therefore for every x ∈ X that the limit set ω+(x) is a singleton. Any form of
non-monotonic behavior such as periodic orbits with a period p ≥ 2 is therefore
ruled out when h is non-decreasing. Now suppose that h is non-increasing.
This implies that the second iterate h(2) is non-decreasing. Consequently, every
limit set of the dynamical system (X,h(2)) is a singleton and it follows that
every limit set of the original system (X,h) consists of at most two points.
A dynamical system (X,h) with a non-increasing law of motion can therefore
have periodic points of period 2 but it cannot have periodic points of any period
p > 2.

Consider the following complete order on the positive integers:

3 ≺ 5 ≺ 7 ≺ . . . ≺ 2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ . . . ≺ 22 · 3 ≺ 22 · 5 ≺ 22 · 7 ≺
. . . ≺ 2n · 3 ≺ 2n · 5 ≺ 2n · 7 ≺ . . . ≺ 2n ≺ . . . ≺ 22 ≺ 2 ≺ 1.

This order is called the Sarkovskii order . Sarkovskii (1964) has proved that a
dynamical system (X,h), where h is a continuous function, has the following
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property: if there exists a periodic point of period p and if p ≺ q, then there
exists also a periodic point of period q.

When we say that a dynamical system is history independent, we wish
to convey the observation that the long-run (asymptotic) behavior of a typical
trajectory is independent of the initial state. Formally, let (X,h) be a dynamical
system and let λ be the Lebesgue measure on X . The dynamical system (X,h)
is history independent , if there exists a subset E of X such that, for λ-almost
every x ∈ X , the limit set of x satisfies ω+(x) = E. The dynamical system
(X,h) is history dependent , if it is not history independent.

We will often be concerned with a family of dynamical systems, where the
members of the family are indexed by a parameter. Formally, let us denote the
parameter by δ ∈ D, where D is taken to be a non-empty interval in R. A
family of dynamical systems will then be denoted by (X,hδ), where hδ maps
X to X for each δ ∈ D. Suppose the dynamical system (X,hδ) is history
independent for every δ ∈ D. Then, for each δ ∈ D, we can find a set E(δ)
such that the following is true for Lebesgue almost every x in X : the limit set
of the trajectory from x generated by the dynamical system (X,hδ) is equal
to E(δ). A bifurcation map is the correspondence which associates to each
δ ∈ D its history independent limit set E(δ) ⊆ X . A bifurcation diagram is a
diagrammatic representation of the graph of the bifurcation map.

We now turn to chaotic behavior. There are several aspects of complicated
dynamics that need to be taken into account. One of the most important ones
is the so-called sensitivity with respect to initial conditions. A simple way
to describe this property is as follows. The dynamical system (X,h) exhibits
geometric sensitivity, if there exists a number γ > 1 such that the following is
true: for every integer τ ≥ 0 there exists ε > 0 such that, for all (x, y) ∈ X×X
with ‖x− y‖ < ε and for all t ∈ {0, 1, 2, . . . , τ}, it holds that

‖h(t)(x) − h(t)(y)‖ ≥ γt‖x− y‖.

Sensitivity with respect to initial conditions is also captured by the concept of a
scrambled set. Let us denote by P the set of all periodic points of the dynamical
system (X,h). A subset S of the state space X is called a scrambled set for the
dynamical system (X,h), if the following two conditions are satisfied. (i) For
all pairs (x, y) satisfying x ∈ S and y ∈ S it holds that

lim inf
t→∞ |h(t)(x) − h(t)(y)| = 0.

(ii) For all pairs (x, y) satisfying x ∈ S and either x �= y ∈ S or y ∈ P it holds
that

lim sup
t→∞

|h(t)(x) − h(t)(y)| > 0.

The dynamical system (X,h) is said to exhibit topological chaos, if there exists
an uncountable scrambled set and a periodic point of a period that is not a
power of 2. Note that due to Sarkovskii’s theorem mentioned above, a dynami-
cal system which has a continuous law of motion and which exhibits topological
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chaos must have infinitely many periodic points of different periods. A famous
theorem by Li and Yorke (1975) states that the dynamical system (X,h) ex-
hibits topological chaos, if h is continuous and if there exists a periodic point
of period p = 3.

One problem with the definition of topological chaos is that the scrambled
set can have Lebesgue measure 0. If this is the case, then the chaotic behavior
may not be observable. A chaos definition that circumvents this problem is
that of ergodic chaos. The dynamical system (X,h) exhibits ergodic chaos,
if there exists an absolutely continuous (with respect to Lebesgue measure)
probability measure µ on X which is invariant and ergodic under h. Invariance
is the property that µ({x ∈ X |h(x) ∈ B}) = µ(B) holds for all measurable
sets B ⊆ X . The invariant measure µ is ergodic, if, for every measurable set
B ⊆ X satisfying {x ∈ X |h(x) ∈ B} = B, it holds that µ(B) ∈ {0, 1}.

Results by Lasota and Yorke (1973) and Li and Yorke (1978) show that the
dynamical system (X,h) has geometric sensitivity and ergodic chaos, if there
exists γ > 1 and a point x̃ ∈ X splitting X into two subintervals (recall that we
assume X to be a compact interval on R) such that (i) h is twice continuously
differentiable on both subintervals, (ii) h is strictly increasing for x < x̃ and
strictly decreasing for x > x̃, and (iii) |h′(x)| ≥ γ for all x ∈ X \ {x̃}.

6.2.2 Optimal Growth Models

We maintain the assumption that the state space X is a non-empty and com-
pact interval on the real line R. A reduced form optimal growth model on X
is described by a triple (Ω,U, δ), where Ω is the transition possibility set , U is
the (reduced form) utility function, and δ is the discount factor . The following
assumptions on (Ω,U, δ) will be maintained throughout this chapter.

A.1: Ω ⊆ X ×X is non-empty, closed, and convex.
A.2: U : Ω �→ R is a continuous and concave function.
A.3: 0 < δ < 1.
A program from x ∈ X is a sequence (xt)∞t=0 satisfying x0 = x and

(xt, xt+1) ∈ Ω for all t ≥ 0. Let (xt)∞t=0 be a program from x ∈ X . It is
called an optimal program from x, if

∞∑
t=0

δtU(xt, xt+1) ≥
∞∑

t=0

δtU(yt, yt+1)

holds for every program (yt)∞t=0 from x.
The issues of existence and uniqueness of optimal programs have been well

studied; see, e.g., Stokey and Lucas (1989) or Mitra (2000). Under assumptions
A.1-A.3 there exists an optimal program from every x ∈ X . Thus, one can
define the value function V : X �→ R by

V (x) =
∞∑

t=0

δtU(xt, xt+1),
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where (xt)∞t=0 is an optimal program from x. The value function V is concave
and continuous on X . Moreover, for all x ∈ X , the Bellman equation

V (x) = max {U(x, z) + δV (z) | (x, z) ∈ Ω}

holds.
For each x ∈ X , we denote by h(x) the set of all z ∈ X which maximize

U(x, z) + δV (z) over all z ∈ X satisfying (x, z) ∈ Ω. That is, for each x ∈ X ,

h(x) = argmax{U(x, z) + δV (z) | (x, z) ∈ Ω} .

A program from x ∈ X is an optimal program, if and only if V (xt) =
U(xt, xt+1) + δV (xt+1) for t ≥ 0, that is, if and only if xt+1 ∈ h(xt) holds
for all t ≥ 0. We call h the optimal policy correspondence.

Given an initial state x ∈ X , there may be more than one optimal program
from x. If, for every x ∈ X , there is a unique optimal program from x, then it
follows that the optimal policy correspondence h is a (single-valued) function.
It can also be shown that this function is continuous on X . A simple condition
that ensures the uniqueness of optimal programs is the strict concavity of the
utility function U with respect to its second argument. Whenever the optimal
policy correspondence is a single-valued function, we shall refer to it as the
optimal policy function.

Reduced form optimal growth models arise in many different contexts. For
the purpose of the present chapter, the two-sector optimal growth model intro-
duced by Uzawa (1964) is the most relevant one. The state variable xt of this
model describes the aggregate capital stock available in the economy at the
beginning of period t. There are two production sectors, one producing a con-
sumption good and the other a capital good. Each sector uses the capital good
and labor as inputs. The capital good cannot be consumed and depreciates at
the rate d, where d ∈ [0, 1]. The labor supply is assumed to be constant and
equal to 1. Denoting the production functions in the consumption good sector
and the capital good sector by c = Fc(xc, �c) and y = Fx(xx, �x), respectively,
and the utility function by u(c), the two-sector model can be formulated as
follows.

Maximize
∞∑

t=0

δtu(ct)

subject to ct ≤ Fc(xc,t, �c,t)
(1 − d)xt ≤ xt+1 ≤ Fx(xx,t, �x,t) + (1 − d)xt

xc,t + xx,t ≤ xt

�c,t + �x,t ≤ 1.

In order to convert the two-sector optimal growth model into its reduced form,
we first determine the transition possibility set Ω. To this end note that the set
of all capital stocks that can be reached from the state x within one period is
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given by {z | (1− d)x ≤ z ≤ Fx(x, 1)+ (1− d)x}. If d > 0 and if the production
function Fx is increasing and concave and satisfies the Inada conditions, then
Fx(x, 1)+ (1−d)x is an increasing and concave function of x. The slope of this
function is strictly greater than 1 for small x and strictly smaller than 1 for
large x. These properties imply that there exists a unique value x̄ > 0 satisfying
x̄ = Fx(x̄, 1)+(1−d)x̄. The following properties hold for any pair (x, z), where
z is a capital stock that can be reached within one period from x: if x ≤ x̄ then
z ≤ x̄, and if x > x̄ then z < x. In other words, x̄ is the maximal sustainable
capital stock. For this reason, it is justified to restrict attention to the compact
state space X = [0, x̄]. The transition possibility set Ω is therefore given by

Ω = {(x, z) | 0 ≤ x ≤ x̄ , (1 − d)x ≤ z ≤ Fx(x, 1) + (1 − d)x}

and the reduced form utility function is given by U(x, z) = u(T (x, z)), where

T (x, z) = maxFc(xc, �c)
subject to z ≤ Fx(xx, �x) + (1 − d)x

xc + xx ≤ x

�c + �x ≤ 1.

The function T describes, for any given x ∈ X , the trade-off between consump-
tion and capital production.

6.3 Optimal Cycles

Consider a reduced form optimal growth model (Ω,U, δ) on the state space X .
Turnpike theory, as developed for example by Scheinkman (1976) or McKen-
zie (1983, 1986), shows that an optimal program for this model must be conver-
gent provided that certain regularity assumptions are satisfied and the discount
factor δ is sufficiently close to 1. In other words, given X , Ω, and U , a suffi-
ciently large time-preference factor δ rules out cyclical or more complicated
optimal programs. Whether complicated dynamic patterns can be optimal for
small values of the discount factor, however, is left open by turnpike theory and
has been the focus of intensive research in the 1980s and 1990s. The present
section surveys some important contributions to this literature.

We start by summarizing a few results regarding the monotonicity proper-
ties of the optimal policy function. These results provide simple conditions for
the non-existence of optimal cycles. The main part of this section, however, is
concerned with the question of how long-run optimal behavior is affected by
changes in the rate at which the future is discounted. In particular we will ob-
serve period-2 cycles being born and changing their amplitude as the discount
factor δ falls.

The class of examples that we study in detail allow for period-2 cycles
but no more complicated behavior than that, and they indicate an interest-
ing feature about the transition from global asymptotic stability of a (unique)
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fixed point at high discount factors to global asymptotic stability of cycles
at lower discount factors. The family of examples in subsection 6.3.3 consti-
tute variations of the example of Weitzman, as discussed in Samuelson (1973).
Weitzman’s example has been widely discussed in the literature; see, for ex-
ample, Scheinkman (1976), McKenzie (1983), Benhabib and Nishimura (1985),
and Mitra and Nishimura (2001). For this family of examples there is a critical
discount factor, δ̂, such that the following is true. For δ > δ̂, all optimal pro-
grams converge to the unique fixed point x̂δ and, for δ < δ̂, almost all optimal
programs converge to a period-2 cycle. The bifurcation diagram also indicates
that the amplitude of the period-2 cycle is monotonic in the discount factor.

The class of examples in subsection 6.3.4 constitute variations of the
example presented by Sutherland (1970). This example has been discussed
in Cass and Shell (1976), Benhabib and Nishimura (1985), and Mitra and
Nishimura (2001). For this family of examples, too, there is a critical discount
factor, δ̂, such that all optimal programs converge to the unique fixed point, if
δ > δ̂, and that almost all optimal programs converge to a period-2 cycle for
δ < δ̂. The range of discount factors can be further subdivided according to
whether the period-2 cycle hits one boundary of the state-space or the other
(or both). The global bifurcation diagram reveals that the amplitude of the
period-2 cycle is not monotonic in the discount factor.

6.3.1 Monotonic Policy Functions

We have seen in subsection 6.2.1 that a dynamical system with a non-decreasing
law of motion cannot generate cycles, and that a dynamical system with a non-
increasing law of motion can generate cycles of period 2 but no cycles of any
period p > 2. A first step towards the analysis of optimal cycles is therefore
the investigation of the conditions that generate a non-decreasing or a non-
increasing optimal policy function, respectively. Very general results in this
respect can be derived by the use of the lattice theoretic concepts of super- and
submodularity; see, e.g., Topkis (1978) or Ross (1983). The function U : Ω �→ R
is said to be supermodular if, for any two pairs (x, z) ∈ Ω and (x′, z′) ∈ Ω, the
following is true: if x < x′, z < z′, (x, z′) ∈ Ω, and (x′, z) ∈ Ω, then it holds that
U(x, z) + U(x′, z′) ≥ U(x, z′) + U(x′, z). The function U is submodular if the
inequality holds in reverse, that is, if U(x, z) + U(x′, z′) ≤ U(x, z′) + U(x′, z).
The following theorem is a variant of a result stated in Amir (1996); see also
Mitra (2000).

Theorem 6.3.1. Let (Ω,U, δ) be an optimal growth model satisfying assump-
tions A.1-A.3 and assume that its optimal programs are described by the optimal
policy function h. If U is supermodular (submodular), then h is non-decreasing
(non-increasing) locally around every point x satisfying (x, h(x)) ∈ intΩ.

Proof. We present the proof for the case where U is submodular; the case of
a supermodular utility function can be dealt with analogously. Let x ∈ X
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be a state such that (x, h(x)) ∈ intΩ. Since the optimal policy function is
continuous, it follows that for every x′ sufficiently close to x, the pairs (x, h(x′)),
(x′, h(x)), and (x′, h(x′)) are also contained in Ω. Let us define z = h(x) and
z′ = h(x′). Without loss of generality we may assume x < x′. We need to show
that z ≥ z′. Suppose to the contrary that z < z′. Because optimal programs
are described by an optimal policy function, the maximizer of the right-hand
side of the Bellman equation must be unique. Since z �= z′ it follows therefore
that U(x, z) + δV (z) > U(x, z′) + δV (z′) and U(x′, z′) + δV (z′) > U(x′, z) +
δV (z), where V is the value function. Adding these inequalities it follows that
U(x, z)+U(x′, z′) > U(x, z′)+U(x′, z). This is a contradiction to the assumed
submodularity of U , which completes the proof.

Theorem 6.3.1 shows that any interior section of the graph of the optimal
policy function of a model with a supermodular (submodular) utility func-
tion is a non-decreasing (non-increasing) curve. If we have additional informa-
tion about the transition possibility set, then it is possible to establish global
monotonicity properties of the optimal policy function. This is shown in the
following corollary which uses the definitions ψ(x) = min{z | (x, z) ∈ Ω} and
φ(x) = max{z | (x, z) ∈ Ω}. Note that assumption A.1 implies that ψ and φ
are continuous functions on X .

Corollary 6.3.1. Let (Ω,U, δ) be an optimal growth model satisfying assump-
tions A.1-A.3 and assume that its optimal programs are described by the optimal
policy function h.
(i) If ψ and φ are non-decreasing functions and if U is supermodular, then it
follows that h is non-decreasing on X.
(ii) If ψ and φ are non-increasing functions and if U is submodular, then it
follows that h is non-increasing on X.

An important case in which the functions ψ and φ are non-decreasing is the
two-sector model discussed in subsection 6.2.2. A simple example in which the
functions ψ and φ are non-increasing is given by Ω = X ×X .

If U is a twice continuously differentiable function, then supermodular-
ity (submodularity) follows from U12(x, z) > 0 (U12(x, z) < 0); see, e.g.,
Ross (1983). This observation can be used to prove the following result due
to Benhabib and Nishimura (1985). In order to formulate it, one needs to im-
pose a smoothness condition on the utility function.

A.4: The utility function U is twice continuously differentiable on the inte-
rior of Ω with second-order partial derivatives U11, U12, and U22. Moreover, it
holds that U11(x, z) < 0, U22(x, z) < 0, and U11(x, z)U22(x, z)−U12(x, z)2 ≥ 0
for all (x, z) in the interior of Ω.

Note that assumption A.4 implies strict concavity of the utility function
with respect to its second argument which, in turn, implies that an optimal
program from any initial state x ∈ X is unique. In other words, optimal pro-
grams can be described by an optimal policy function.
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Theorem 6.3.2. Let (Ω,U, δ) be an optimal growth model satisfying assump-
tions A.1-A.4 and let h be its optimal policy function.
(i) If (x, h(x)) ∈ intΩ and U12(x, h(x)) > 0 (U12(x, h(x)) < 0), then it follows
that h is non-decreasing (non-increasing) locally at x.
(ii) If (x, h(x)) ∈ intΩ, (h(x), h(2)(x)) ∈ intΩ, and U12(x, h(x)) > 0
(U12(x, h(x)) < 0), then it follows that h is strictly increasing (strictly decreas-
ing) locally at x.

Proof. Part (i) follows by the same argument that has been used in the proof
of theorem 6.3.1 because U12(x, h(x)) > 0 (U12(x, h(x)) < 0) implies su-
permodularity (submodularity) of U locally around (x, h(x)). To prove part
(ii), we simply have to show that x �= x′ implies h(x) �= h(x′). Suppose to
the contrary that h(x) = h(x′), where x′ is sufficiently close to x such that
(x′, h(x)) is in the interior of Ω. It follows that both (x, h(x), h(2)(x), . . .) and
(x′, h(x), h(2)(x), . . .) are optimal paths and, since the three points (x, h(x)),
(x′, h(x)), and (h(x), h(2)(x)) are in the interior of Ω, the Euler equation
U2(y, h(x)) + δU1(h(x), h(2)(x)) = 0 must hold for y ∈ {x, x′}. Obviously, this
is not possible if x′ �= x, x′ is sufficiently close to x, and U12(x, h(x)) �= 0.

6.3.2 The Role of Discounting

We now turn to the question of how the existence or non-existence of a period-2
cycle depends on the size of the discount factor δ. This question has been thor-
oughly investigated by Mitra and Nishimura (2001), and the rest of this section
draws heavily from their paper. In order to be able to develop a precise char-
acterization, Mitra and Nishimura (2001) restrict the class of optimal growth
models by a number of assumptions. These assumptions ensure that the dy-
namical system (X,h) is history independent, that optimal programs converge
either to fixed points or to period-2 cycles, and that the asymptotic behavior
of optimal programs depends in a simple way on the discount factor. We sum-
marize their arguments in the present subsection. Subsections 6.3.3 and 6.3.4
will then illustrate the application of these ideas by means of two important
classes of examples.

Mitra and Nishimura (2001) postulate the following strengthened version
of assumption A.1.

A.1+: It holds that X = [0, 1] and Ω = X ×X .
In addition to A.1+ and A.2-A.4, they impose strict monotonicity and sub-

modularity of the utility function.
A.5: For all (x, z) in the interior of Ω it holds that U1(x, z) > 0, U2(x, z) <

0, and U12(x, z) < 0.
The monotonicity part of assumption A.5 is standard, submodularity is as-

sumed to ensure that optimal programs can exhibit period-2 cycles but no more
complicated behavior. The following result is a straightforward consequence of
the results stated in the previous subsection.
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Lemma 6.3.1. Let (Ω,U, δ) be an optimal growth model satisfying assump-
tions A.1+ and A.2-A.5. There exists an optimal policy function h. The optimal
policy function is continuous and non-increasing on X. There exists a unique
fixed point of the dynamical system (X,h). All optimal programs converge either
to the fixed point or to a period-2 cycle.

At this point it is important to emphasize the fact that the optimal policy
function h and, therefore, its fixed point depend on the discount factor. Hence-
forth, we consider (Ω,U) as fixed and treat δ as a parameter varying between
0 and 1. In order to ensure that the fixed point of (X,h) is in the interior of the
state space, Mitra and Nishimura (2001) postulate the following assumption.

A.6: Let the function π : (0, 1) �→ R be defined by π(x) = −U2(x, x)/U1(x, x).
It holds that limx→0 π(x) = 0 and limx→1 π(x) > 1.

It is now possible to prove the following result.

Lemma 6.3.2. Let Ω and U be given such that assumptions A.1+, A.2, and
A.4-A.6 are satisfied. For all δ ∈ (0, 1) let hδ : X �→ X be the optimal policy
function of (Ω,U, δ) and let x̂δ be the unique fixed point of (X,hδ).
(i) The inequality 0 < x̂δ < 1 holds for all δ ∈ (0, 1).
(ii) The fixed point x̂δ is continuously differentiable and strictly increasing with
respect to δ and it holds that limδ→0 x̂δ = 0 and x̂1 := limδ→1 x̂δ ∈ (0, 1).

The general strategy of Mitra and Nishimura (2001) proceeds now as fol-
lows. First, an auxiliary problem is formulated which involves optimization over
two periods only and in which the terminal state is restricted to be the same
as the initial state. The unique optimal policy function of that problem is de-
noted by fδ. Due to the construction of the auxiliary problem, it follows that
the fixed point of (X,hδ) coincides with the fixed point of (X, fδ) and that
interior period-2 cycles of (X,hδ) coincide with those generated by (X, fδ).
Furthermore, the value of the derivative of fδ at the fixed point x̂δ gives in-
formation about the eigenvalues of the Euler equation of (Ω,U, δ) at x̂δ which,
in turn, determine the local stability (or instability) of x̂δ as a fixed point of
(X,hδ). A condition is then imposed on fδ which ensures that local stability of
x̂δ implies almost global asymptotic stability of x̂δ, and that instability of x̂δ

implies almost global stability of a period-2 cycle of (X,hδ). Finally, Mitra and
Nishimura (2001) impose another condition which ensures that there is only a
single switching from local stability of x̂δ to instability (and no switch back to
local stability) as the discount factor changes from 1 to 0. We shall now briefly
explain the most important details of this strategy.

For any given x ∈ X , consider the following auxiliary optimization problem:

Maximize U(x, z) + δU(z, x)
subject to z ∈ X.

Given our assumptions, this problem has a unique optimal solution which we
denote by fδ(x). If (x, fδ(x)) ∈ intΩ, then we have the first-order condition
U2(x, fδ(x)) + δU1(fδ(x), x) = 0. Since U22(x, fδ(x)) + δU11(fδ(x), x) < 0, one
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can apply the implicit function theorem to conclude that fδ is differentiable at
x and that

f ′
δ(x) = −U12(x, fδ(x)) + δU12(fδ(x), x)

U22(x, fδ(x)) + δU11(fδ(x), x)
. (6.1)

Let us denote the second iterate of fδ by Fδ, that is Fδ = f
(2)
δ . The follow-

ing so-called history independence condition plays a crucial role in Mitra and
Nishimura (2001).

A.7: If a, b, and c are fixed points of (X,Fδ) satisfying a < b < c, then it
follows that F ′

δ(b) > 1.
From (6.1) one can easily see that f ′

δ(x) < 0 holds whenever (x, fδ(x)) ∈
intΩ. The absolute value of f ′

δ(x̂δ) contains information about the local sta-
bility or instability of the fixed point x̂δ with respect to the dynamical system
(X,hδ). Assumption A.7 (history independence) allows one to link the local
behavior of (X,hδ) around x̂δ to global properties. The details are summarized
in the following theorem.

Theorem 6.3.3. Let (Ω,U, δ) be an optimal growth model satisfying A.1+ and
A.2-A.7.
(i) If −1 < f ′

δ(x̂δ) < 0, then x̂δ is a locally stable fixed point of (X,hδ). For all
x ∈ (0, 1) it holds that the optimal program from x converges to x̂δ.
(ii) If f ′

δ(x̂δ) < −1, then x̂δ is an unstable fixed point of (X,hδ). There exists
a period-2 cycle of (X,hδ) with orbit {x∗δ , z∗δ} such that the following is true:
for all x ∈ (0, x̂δ) ∪ (x̂δ, 1) it holds that the optimal program from x converges
to this period-2 cycle, that is, ω+(x) = {x∗δ , z∗δ}.

The above theorem implies that, under the stated assumptions, the set

{(X,hδ) | δ ∈ (0, 1), f ′
δ(x̂δ) �= −1}

is a family of history independent dynamical systems. It makes therefore
sense to consider the bifurcation diagram of this family with δ as the bi-
furcation parameter. In order to construct this diagram, one needs to find
out for which δ it holds that −1 < f ′

δ(x̂δ) < 0 and for which δ it holds
that f ′

δ(x̂δ) < −1. To this end, first note that assumption A.4 implies
that max {|U11(x̂1, x̂1)|, |U22(x̂1, x̂1)|} ≥ |U12(x̂1, x̂1)|, where as before x̂1 =
limδ→1 x̂δ. Consider the following slight strengthening of this condition.

A.8: It holds that max {|U11(x̂1, x̂1)|, |U22(x̂1, x̂1)|} > |U12(x̂1, x̂1)|.
Under A.4, A.5, and A.8 one has U11(x̂1, x̂1) + U22(x̂1, x̂1) < 2U12(x̂1, x̂1).

Since x̂δ is continuous with respect to δ, it must therefore hold for all δ suffi-
ciently close to 1 that

U11(x̂δ , x̂δ) + U22(x̂δ, x̂δ) < (1 + δ)U12(x̂δ, x̂δ). (6.2)

Because of (6.1) this implies −1 < f ′
δ(x̂δ) < 0. Thus, according to theorem 6.3.3,

for δ sufficiently large, the unique fixed point x̂δ is almost globally stable. If
the inequality in (6.2) is reversed, however, the fixed point loses its stability
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and a period-2 cycle becomes almost globally stable. A sufficient condition for
there to be exactly one switch from stability of the fixed point to its instability
as δ decreases from 1 to 0 is the following so-called unique switching condition
from Mitra and Nishimura (2001).

A.9: The function R : (0, 1) �→ (0,∞) defined by

R(x) =
U2(x, x)U11(x, x) − U1(x, x)U22(x, x)

[U2(x, x) − U1(x, x)]U12(x, x)

is strictly increasing and satisfies 0 < limx→0R(x) < 1.
Indeed Mitra and Nishimura (2001) prove the following result.

Theorem 6.3.4. For each δ ∈ (0, 1) let (Ω,U, δ) be an optimal growth model
satisfying A.1+, A.2, and A.4-A.7. Furthermore, assume that A.8 and A.9 are
satisfied. Then there exists a unique critical discount factor δ̂ ∈ (0, 1) satisfying
R(x̂δ̂) = 1. The following properties are true:
(i) If δ̂ < δ < 1, then the unique fixed point x̂δ is almost globally stable.
(ii) If 0 < δ < δ̂, then there exists a period-2 cycle which is almost globally
stable.

6.3.3 Variations on Weitzman’s Example

In this section we discuss the case in which the utility function U is given by

U(x, z) = xα(1 − z)β,

where α and β are positive parameters satisfying α + β ≤ 1. Using the Euler
equation, it is easy to verify that the unique fixed point of (X,hδ) is given by
x̂δ = αδ/(αδ + β). Furthermore, the function R from assumption A.9 is given
by

R(x) = [1 − α+ (α− β)x]/[α − (α− β)x]. (6.3)

The special case in which α = β = 1/2 is Weitzman’s example (as reported
in Samuelson (1973)). For this special case it is known that, for every δ ∈ (0, 1),
the optimal policy function is given by

hδ(x) = δ2(1 − x)/[x+ δ2(1 − x)],

and that every x �= x̂δ is a periodic point of period 2 of the dynamical system
(X,hδ). This implies in particular that the limit sets ω+(x) and ω+(z) of any
two points x ∈ X and z �= hδ(x) are different from each other. The dynamical
system (X,hδ) is therefore history dependent. It is also worth pointing out
that, in Weitzman’s example, the function R from (6.3) is constant and equal
to 1, which shows that A.9 fails to be satisfied and underlines the degenerate
nature of this example. Slight modifications of Weitzman’s example, however,
lead to history independent optimal policy functions and can be dealt with by
the methods from the previous subsection.
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First of all, it is easy to see that the function R from (6.3) satisfies 0 <
limx→0R(x) < 1, if and only if α > 1/2. Because of α+β ≤ 1, this implies that
α > β and it follows that R is strictly increasing. Thus, in order for assumption
A.9 to be satisfied, it is necessary and sufficient to have α > 1/2. It can be
shown that assumptions A.1+ and A.2-A.8 hold also under this assumption.
The function R attains the critical value 1 at the value x̂δ̂ = (2α−1)/[2(α−β)].
The corresponding critical value of the discount factor is δ̂ = (2α− 1)β/[α(1−
2β)]. Let us now distinguish between the two cases α+ β = 1 and α+ β < 1.

Fig. 6.1. The modified Weitzman example with 1/2 < α = 1 − β < 1.

If α = 1−β > 1/2, then we have δ̂ = (1−α)/α and x̂δ̂ = 1/2. For δ ∈ (δ̂, 1),
the fixed point x̂δ is globally stable. For δ ∈ (0, δ̂), optimal programs from all
initial stocks other than x̂δ converge to the period-2 boundary cycle with orbit
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{0, 1}. At the bifurcation point δ = δ̂ = (1 − α)/α one has neutral cycles, that
is, starting from any initial stock x ∈ X , the period-2 cycle with orbit {x, 1−x}
is optimal; see figure 6.1.

Fig. 6.2. The modified Weitzman example with 1/2 < α < 1 − β < 1.

Now consider the case where α + β < 1. For δ ∈ (δ̂, 1), the fixed point x̂δ

is globally stable. For δ ∈ (0, δ̂), optimal programs from all initial states other
than x̂δ converge to a unique period-2 interior cycle. This interior cycle has
small amplitude for δ close to δ̂. The amplitude increases as δ falls and, as δ
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converges to zero, the orbit of this period-2 cycle approaches {0, 1}. Thus, we
obtain the standard bifurcation diagram of a flip bifurcation; see figure 6.2.

6.3.4 Variations on Sutherland’s Example

We now consider the case in which the utility function U is given by

U(x, z) = −ax2 − bxz − cz2 + dx.

It is assumed that a, b, c, and d are positive real numbers satisfying 4ac > b2,
b > 2c, and 2(a + b + c) > d > 2b(a − c)/(b − 2c). Note that these parameter
restrictions imply that U is strictly concave and that a > c, d > 2a > b, and
a + c > b. From the Euler equation one can see that the unique fixed point
of (X,hδ) is given by x̂δ = dδ/[b + 2c + δ(2a + b)] and that x̂δ ∈ (0, 1). The
function R from assumption A.9 is given by

R(x) = [2cd+ 2b(a− c)x]/[bd− 2b(a− c)x].

Given the above mentioned parameter restrictions, assumptions A.1+ and A.2-
A.9 are satisfied. The function R attains the critical value 1 at the value x̂δ̂ =
d(b− 2c)/[4b(a− c)]. The corresponding critical value of the discount factor is
δ̂ = (b−2c)/(2a− b). Defining δ1 = 2c/(d−2a) and δ2 = b/(d− b) it holds that
0 < δ1 < δ2 < δ̂ < 1. Mitra and Nishimura (2001) show that the bifurcation
diagram of the family (X,hδ) is given by figure 6.3.

For δ ∈ (δ̂, 1), the fixed point x̂δ is globally stable and, consequently, there
do not exist any periodic points of period p ≥ 2. For δ ∈ (δ2, δ̂), the fixed point
x̂δ is unstable and there exists x∗δ ∈ (0, x̂δ) such that {x∗δ , 1} is the orbit of
a period-2 cycle. All optimal programs starting from x �= x̂δ converge to this
period-2 cycle. It holds that limδ→δ2 x

∗
δ = 0. For δ ∈ (δ1, δ2), the fixed point

x̂δ is unstable and all optimal programs starting from x �= x̂δ converge to a
period-2 cycle with orbit {0, 1}. Finally, for δ ∈ (0, δ1), the fixed point x̂δ is
unstable and there exists z∗δ ∈ (x̂δ , 1) such that {0, z∗δ} is the orbit of a period-
2 cycle. All optimal programs starting from x �= x̂δ converge to this period-2
cycle. It holds that limδ→0 z

∗
δ = 0 and limδ→δ1 z

∗
δ = 1.

6.4 Optimal Chaos

In the early 1980s, the economics profession became aware of the fact that
simple economic mechanisms may generate chaotic dynamics; see, e.g., Ben-
habib and Day (1982) and Day (1982, 1983). It did not take long until it was
shown that the occurrence of deterministic chaos does not necessarily rely on
market imperfections or on non-standard assumptions. As a matter of fact, the
papers by Deneckere and Pelikan (1986) and Boldrin and Montrucchio (1986)
demonstrated that chaotic behavior can be optimal in the reduced-form opti-
mal growth model discussed in subsection 6.2.2 above. These results confirmed
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Fig. 6.3. Sutherland’s example.

that the standard assumptions of optimal growth theory are logically consistent
with endogenously generated business cycles. This insight was very important
but it raised also a number of new questions, especially regarding the parameter
values for which erratic non-periodic behavior can be optimal.

The only explicit parameter in the reduced form optimal growth model is
the discount factor. The research surveyed in chapter 4 of this handbook re-
fined the approach initiated by Boldrin and Montrucchio (1986) and developed
discount factor restrictions implied by optimal chaos. Parallel to this devel-
opment, a number of researchers studied optimal growth models under more
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detailed structural assumptions on the preferences and the technologies and
derived characterizations of the parameter constellations which are consistent
with chaos in that framework. By far the most popular framework consid-
ered in this literature is the two-sector optimal growth model discussed in
subsection 6.2.2 above, but the variations of the Weitzman example already
encountered in our discussion of optimal cycles in section 6.3 have also been
studied. In the present section we survey the most important contributions to
this literature.

6.4.1 Sources of Optimal Chaos

Consider a reduced-form optimal growth model with state space X = [0, x̄]
and assume that the transition possibility set takes the form Ω = {(x, z) |x ∈
X , 0 ≤ z ≤ φ(x)}, where φ : X �→ X is a continuous, non-decreasing, and
concave function satisfying φ(0) = 0, φ(x̄) = x̄, and φ(x) > x for all x ∈ (0, x̄).
Furthermore, assume that φ is continuously differentiable on (0, x̄) with deriv-
ative φ′. It is easy to see that such a transition possibility set can result from
a two-sector model with full capital depreciation (d = 1) and a production
function for the capital good which satisfies Fx(x, 1) = φ(x) for all x ∈ X . It is
also clear that assumption A.1 holds. Furthermore, suppose that assumptions
A.2 and A.4 are satisfied. If U12(x, z) is strictly positive for all (x, z) in the in-
terior of Ω, then it follows from corollary 6.3.1(i) that the graph of the optimal
policy function h is non-decreasing on X . From the results stated in subsec-
tion 6.2.1 we know that all optimal programs must converge to fixed points of
(X,h). Thus, chaotic optimal programs are ruled out. A necessary condition
for the occurrence of chaotic dynamics in the present situation is therefore that
U12(x, z) is negative for some (x, z) in the interior of Ω.

If U12(x, z) < 0 holds for all (x, z) in the interior of Ω, then it follows
from theorem 6.3.2 that the graph of h is non-increasing whenever it is in the
interior of Ω. Nishimura and Yano (1994) elaborate on this observation and
describe a method by which one can construct optimal growth models that
display topological chaos. The main idea is as follows. First of all, it is assumed
that there exists an optimal steady state in the interior of the state space X .
Because of the Euler equation, this is tantamount to assuming a solution of
the equation U2(x̂, x̂) + δU1(x̂, x̂) = 0 satisfying 0 < x̂ < x̄. Together with
the assumption φ(x) > x for all x ∈ (0, x̄) this implies that the point (x̂, x̂) is
located on the graph of the optimal policy function and in the interior of Ω.
Because the graph of h must be a non-increasing curve whenever it is in the
interior of Ω, it follows that there must be x̃ < x̂ such that (i) h(x) = φ(x)
for all x ∈ [0, x̃] (hence, h is non-decreasing on [0, x̃]), (ii) h(x) < φ(x) for all
x ∈ (x̃, x̄], and (iii) h is non-increasing on [x̃, x̄]. The optimal policy function
has therefore a tent shape. In a second step one has to make sure that the tent
is steep enough in order to generate chaotic dynamics. A sufficient condition for
this to be the case is the existence of a period-3 cycle; see Li and Yorke (1975).
Nishimura and Yano (1994) construct the period-3 cycle in such a way that two
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elements of its orbit are in the interval (0, x̃) (that is, they correspond to points
on the upper boundary of Ω) while the remaining element is in the interval
(x̃, x̄) corresponding to an interior point. Figure 6.4 illustrates the general idea
of this construction. The precise conditions under which it is possible are stated
in the following theorem in which

Γ (x, y, z) = U2(x, y) + δU1(y, z),
Γ(1)(x) = Γ (φ(x), φ(2)(x), x),

Γ(2)(x) = Γ (x, φ(x), φ(2)(x)) + δΓ(1)(x)φ′(φ(x)),

Γ(3)(x) = Γ (φ(2)(x), x, φ(x)) + δΓ(2)(x)φ′(x).

Theorem 6.4.1. Consider the optimal growth problem (Ω,U, δ) on X = [0, x̄],
where the transition possibility set is Ω = {(x, z) |x ∈ X , 0 ≤ z ≤ φ(x)}
and φ is continuous, non-decreasing, and concave on [0, x̄] and continuously
differentiable on (0, x̄). Suppose that φ(0) = 0, φ(x̄) = x̄, and φ(x) > x for
all x ∈ (0, x̄). Let assumptions A.2-A.4 be satisfied and let h be the optimal
policy function. If there exists x ∈ (0, x̄) and x′ ∈ (0, x̄) such that Γ(1)(x) ≥ 0,
Γ(2)(x) ≥ 0, Γ(3)(x) ≤ 0, and Γ(3)(x′) > 0, then it follows that the dynamical
system (X,h) exhibits topological chaos.

Nishimura and Yano (1994) show that the conditions of theorem 6.4.1 can
be satisfied in an example, in which the state space isX = [0, 1] and the reduced
form utility function is given as in the generalized Weitzman example, that is,
U(x, z) = xα(1 − z)β . As we have seen in subsection 6.3.3 above, this utility
function allows for period-2 cycles but it does not allow for more complicated
dynamics, if Ω = X ×X . For this reason, Nishimura and Yano (1994) have to
choose a non-trivial transition possibility set, that is, they have to specify the
function φ in such a way that φ(x) < 1 holds for all sufficiently small x.

Theorem 6.4.1 traces the occurrence of optimal chaos to the tent shaped
optimal policy function. The tent shape arises because the transition possibility
set Ω has a non-trivial and strictly increasing upper boundary and because the
optimal policy function is steeply decreasing on the interior of Ω. None of
these two properties alone is sufficient to generate optimal chaos, but their
combination is. The non-trivial upper boundary of Ω (i.e., the fact that φ(x) <
1 holds for all sufficiently small x) corresponds to the assumption that the
economic system cannot move instantaneously from very small states to very
large states. This, in turn, can be interpreted as a form of ‘upward inertia’ of the
economic system. The steeply decreasing shape of the optimal policy function in
the interior of Ω has two sources: submodularity of U and strong discounting.
Submodularity of U means that the maximizer of U(x, z) with respect to z
is a decreasing function of x. In other words, if the degree of submodularity
is sufficiently strong and the decision maker were myopic (δ = 0), he or she
would want to permanently oscillate between small and large states. As the
discount factor increases, however, this incentive is increasingly dominated by
the decision maker’s desire to smooth consumption which follows from the
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Fig. 6.4. The construction from Nishimura and Yano (1994).

concavity of the utility function. To summarize, Nishimura and Yano (1994)
have identified three sources of optimal chaos: upward inertia, submodularity,
and strong discounting.

Nishimura and Yano (1995a) replace the assumption of upward inertia of
the economic system by ‘downward inertia’ and show that this can also lead
to chaotic optimal programs. They create downward inertia by partial capital
depreciation (note that the approach taken by Nishimura and Yano (1994) can
be interpreted in the context of the two-sector model provided that capital
depreciates fully, i.e., d = 1). In the case of partial depreciation the economy
cannot move instantaneously from very large states to very small states. For-
mally, this follows from the fact that the transition possibility set is given by
Ω = {(x, z) |x ∈ X , (1 − d)x ≤ z ≤ φ(x)}. Except for the assumption d < 1,
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the approach taken in Nishimura and Yano (1995a) is the same as in Nishimura
and Yano (1994). As before it is assumed that the utility function satisfies A.2
and A.4 as well as U12(x, z) < 0 for all (x, z) in the interior of Ω. However,
in the present case with less than full depreciation, it follows that there must
exist two states x̃ and x̃′ in (0, x̄) such that the graph of the optimal policy
function h coincides with the upper boundary of Ω for x ∈ [0, x̃] and with its
lower boundary for x ∈ [x̃′, x̄]. In between the two values x̃ and x̃′, the graph of
h is in the interior of Ω and is strictly decreasing. The optimal policy function
is therefore not tent-shaped but has an interior maximum x̃ and an interior
minimum x̃′. The authors then go on and make the graph of h on the interval
(x̃, x̃′) sufficiently steep such that a period-3 cycle exists, which touches the
lower boundary of Ω twice whereas the third element of the orbit of the cycle
corresponds to a point on the interior section of the optimal policy function.
The construction is illustrated in figure 6.5. Conditions very similar to those
stated in theorem 6.4.1 are shown to be sufficient for the construction to lead
to the desired result. As before, the conditions are shown to be satisfied by
a model in which the utility function is given as in the generalized Weitzman
example, i.e., U(x, z) = xα(1 − z)β. This time, the upper boundary of Ω can
be chosen as φ(x) = 1, because the possibility of chaotic dynamics relies on the
assumption of downward inertia (partial depreciation ψ(x) > 0) rather than on
upward inertia (φ(x) < 1).

The paper by Khan and Mitra (2005) also points to downward inertia cre-
ated by partial depreciation of capital as a possible source of optimal chaos.
Kahn and Mitra (2005) consider a discrete-time version of the Robinson-Solow-
Srinivasan model with two production sectors. In the notation introduced in
subsection 6.2.2, the model is specified by the discount factor δ ∈ (0, 1), the
capital depreciation rate d ∈ (0, 1), and by the functions

Fc(xc, �c) = min{xc, �c},
Fx(xx, �x) = �x/µ,

u(c) = c.

In other words, the utility function is linear, the production of one unit of the
consumption good requires one unit of capital and one unit of labor, and the
production of one unit of capital requires µ units of labor (and no capital). The
maximal sustainable capital stock is given by x̄ = 1/(dµ) and the transition
possibility set is given by Ω = {(x, z) | 0 ≤ x ≤ 1/(dµ), (1 − d)x ≤ z ≤ φ(x)},
where φ(x) = (1−d)x+(1/µ). Khan and Mitra (2005) first show that, whenever
δ < µ, all optimal programs are described by a continuous optimal policy
function h. If in addition to δ < µ, the parameters µ and d are related in a
certain way, then the dynamical system (X,h) is shown to exhibit topological
chaos. Finally, Khan and Mitra (2005) prove that, for any value d ∈ (0, 1),
there is some µ such that the aforementioned relation between d and µ is indeed
satisfied. That is, whenever the rate of depreciation is positive and smaller than
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Fig. 6.5. The construction from Nishimura and Yano (1995a).

1, one can find parameters δ and µ such that the model generates topological
chaos.

Boldrin and Deneckere (1990) use a combination of analytical and numerical
methods to derive interesting insights into the sources of optimal chaos. Their
model is a two-sector model with a Cobb-Douglas production function for the
consumption good, a Leontief production function for the capital good, and a
linear utility function. In the notation of subsection 6.2.2 these assumptions
can be written as follows:
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Fc(xc, �c) = xα
c �

1−α
c ,

Fx(xx, �x) = µmin{xx, �x/µ},
u(c) = c.

This specification gives rise to the transition possibility set Ω = {(x, z) | 0 ≤
x ≤ 1, (1 − d)x ≤ z ≤ φ(x)}, where φ(x) = min{µx, 1}. The reduced form
utility function is

U(x, z) = µ−α[1 + (1 − d)x − z]1−α[(1 − d+ µ)x − z]α.

As for the parameter values, it is assumed that α ∈ (0, 1) and µ > 1/δ. The
inequality µ > 1/δ implies that the marginal product of capital in the invest-
ment good sector covers principal and interest in the steady state (recall that
the real interest rate in a steady state is 1/δ− 1). This assumption guarantees
the existence of an interior steady state. The efficient capital-labor ratio in the
investment good sector is fixed at 1/µ. The factor substitutability in the con-
sumption good sector implies that both factors will be fully employed. Thus,
if the economy-wide capital-labor ratio x exceeds 1/µ, then it follows that the
consumption good sector must be more capital intensive than the investment
good sector. Conversely, if x < 1/µ, then consumption goods are produced
with lower capital intensity than investment goods. Thus, this model allows for
capital intensity reversal.

Boldrin and Deneckere (1990) derive conditions for the existence of cycles of
period 2 and 4. Fixing the values of α, µ, and d and treating δ as a bifurcation
parameter, they show by means of numerical simulations that successive bifur-
cations can lead to topological chaos (period-doubling scenario). For example,
when α = 97/100, µ = 100/9, and d = 1, topological chaos is encountered
for discount factors between 0.099 and 0.112. They also show that chaos typ-
ically disappears rapidly, if one reduces the depreciation rate d from 100% to
smaller values, but reappears, if d takes values of 10% or smaller. This suggests
that, for almost full depreciation, chaos is generated by the same mechanism
as in Nishimura and Yano (1994) (upward inertia and short-run incentives for
oscillations), whereas for small values of d it is generated by the mechanism
described by Nishimura and Yano (1995a) (downward inertia and short-run
incentives for oscillations).

6.4.2 Optimal Chaos Under Weak Impatience

The parametric examples with chaotic optimal policy functions discussed in the
papers by Nishimura and Yano (1994, 1995a) and Boldrin and Deneckere (1990)
involve the discount factors δ = 0.01, δ = 0.05, and δ ≈ 0.1, respectively. These
are unrealistically small numbers if the chaotic fluctuations are interpreted
as business cycles. The study by Nishimura et al. (1994) shows that chaotic
dynamics can occur for all values of the discount factor. In addition, Nishimura
et al. (1994) construct optimal policy functions which are not only chaotic
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in the sense of topological chaos but also in the sense of ergodic chaos and
geometric sensitivity. This is accomplished by proving that, for every δ ∈ (0, 1)
and every γ satisfying 1 < γ < min{2, δ−2}, there exists an optimal growth
model (Ω,U, δ) on the state space X = [0, 1] with the optimal policy function

h(x) =
{

γx if x ∈ [0, 1/γ],
2 − γx if x ∈ [1/γ, 1].

Since γ > 1, it follows from the results by Lasota and Yorke (1973) and Li and
Yorke (1978) mentioned in subsection 6.2.1 that this optimal policy function
exhibits ergodic chaos and geometric sensitivity. The transition possibility set
is chosen to be Ω = {(x, z) | 0 ≤ x ≤ 1, 0 ≤ z ≤ φ(x)} with φ(x) = min{γx, 1}.
This shows that the increasing part of the optimal policy function coincides
with the boundary of Ω. The decreasing part, however, lies in the interior
of Ω. The specification of the utility function U , which is the key step in
the construction, is based on ideas developed in Sorger (1992). It leads to an
optimal value function which is a simple quadratic polynomial. Thus, Nishimura
et al. (1994) have proved the following result.

Theorem 6.4.2. For every δ ∈ (0, 1) there exists a reduced form optimal
growth model which satisfies assumptions A.1 and A.2, has a strictly concave
utility function, and has an optimal policy function exhibiting ergodic chaos and
geometric sensitivity.

Nishimura et al. (1994) also demonstrate that the reduced form optimal growth
models in theorem 6.4.2 can be thought of as arising from two-sector models
in which both production functions are of the Leontief type and in which the
utility function reflects a wealth effect.

Nishimura and Yano (1995b) consider the two-sector growth model with
Leontief production functions in both sectors and a linear utility function with-
out any wealth effect. They also demonstrate that ergodic chaos and geometric
sensitivity can occur for arbitrary small values of the discount rate. The lin-
ear structure imposed by the utility function and the production technologies
makes it possible to consider the model as a dynamic linear programming prob-
lem; see Nishimura and Yano (1996).

In the notation of subsection 6.2.2, Nishimura and Yano (1995b) assume
d = 1 and

Fc(xc, �c) = min{xc, �c/α},
Fx(xx, �x) = µmin{xx, �x/β},
u(c) = c.

This specification implies that the maximal capital stock that can be reached
from x within a single period is given by φ(x) = µmin{x, 1/β}. Therefore, the
maximal sustainable capital stock is µ/β and it suffices to restrict attention
to the state space X = [0, µ/β]. The transition possibility set is given by
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Ω = {(x, z) | 0 ≤ x ≤ µ/β , 0 ≤ z ≤ φ(x)}. This two-sector model is fully
determined by the technological parameters α, β, and µ and the discount factor
δ. We shall refer to the model by M(α, β, µ, δ). The main result from Nishimura
and Yano (1995b) can now be stated as follows.

Theorem 6.4.3. For every δ′ ∈ (0, 1) there exist parameters α, β, and µ as
as well as an open interval I ⊆ (δ′, 1) such that for all δ ∈ I, the two-sector
model M(α, β, µ, δ) has the optimal policy function h specified by

h(x) =
{

µx if x ≤ 1/β,
µ(1 − αx)/(β − α) if x ≥ 1/β, (6.4)

and the dynamical system (X,h) exhibits ergodic chaos and geometric sensitiv-
ity.

The proof of this result is very technical and will not be presented here.
Instead, we will restrict ourselves to a discussion of the main steps of the
proof. To begin with, Nishimura and Yano (1995b) assume that the following
parameter restrictions are satisfied:

µ > 1/δ,
β > α > 0, (6.5)
(β/α) − 1 < µ < β/α.

The condition µ > 1/δ ensures the existence of an interior steady state. The
inequality β > α > 0 says that the consumption good sector is more capital
intensive than the investment good sector. To explain the meaning of the last
parameter restriction in (6.5), it is useful to compute the reduced form utility
function

U(x, z) = max{Fc(xc, �c) |xc + xx ≤ x, �c + �x ≤ 1, Fx(xx, �x) ≥ z}.

In the optimal solution to this program, the constraint �c+�x ≤ 1 is not binding,
if z < f(x), and the constraint xc + xx ≤ x is not binding, if z > f(x). Here
the function f : X �→ R is defined by f(x) = µ(1−αx)/(β−α). Because of the
assumption β > α > 0, it follows that f is a strictly decreasing and continuous
function. Consequently, its inverse f−1 exists and the condition z < f(x) can
also be written as x < f−1(z). In other words, in the optimal solution, labor is
not fully employed, if the available capital stock is so small that capital input
forms a bottleneck. If the available capital stock exceeds f−1(z), on the other
hand, then capital is not fully employed. Full employment of both input factors
occurs, if and only if z = f(x).

Note that f(1/β) = φ(1/β) = µ/β. This shows that the graph of f intersects
the upper boundary of the transition possibility set in its kink at x = 1/β.
Nishimura and Yano (1995b) want to ensure that the graph of f does not
intersect the lower boundary of Ω and that its slope is smaller than −1. This
is exactly what the last line of (6.5) achieves.
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Simple calculations show that the reduced form utility function is given by

U(x, z) =
{

x− z/µ if x ≤ f(z),
(µ− βz)/(αµ) if x ≥ f(z).

It is easy to see from this expression that the indifference curves of U are
obtained by translating the curve z = φ(x) parallel in the direction of the line
z = f(x). Nishimura and Yano (1995b) argue that, as long as x < 1/β, it
is not possible to employ the entire labor supply because z < f(x) holds for
all (x, z) ∈ Ω satisfying x < 1/β (capital is the bottleneck). In this case it
will therefore be optimal to produce as much capital as possible in order to
clear the bottleneck. Once the capital stock x has become larger than 1/β, it is
possible to fully employ both factors. The optimal activity in this case will be
characterized by full employment of both factors, that is, it will be described
by a point on the graph of f . This suggests that the optimal policy function
is given by (6.4). From the first and the third line in (6.5) it follows that h
is a piecewise linear map with a slope (wherever it is defined) that is larger
than 1 in absolute value. As we have seen in subsection 6.2.1, these properties
ensure that the dynamical system (X,h) exhibits ergodic chaos and geometric
sensitivity.

The crux of the proof in Nishimura and Yano (1995b) consists in showing
that h is actually the optimal policy function of M(α, β, µ, δ). This is a non-
trivial issue because the reduced form utility function is not strictly concave
in any of its arguments. Nishimura and Yano (1995b) address this problem in
two steps. First, they prove that a sufficient condition for h to be the optimal
policy function is that (i) the critical point of h, that is x = 1/β, is a periodic
point of (X,h) with period p > 1 and (ii) the periodic trajectory from x = 1/β
is the unique optimal program from 1/β. Second, they show that this sufficient
condition can be satisfied for an open interval of discount factors arbitrarily
close to 1 provided one lets the period p approach +∞ in an appropriate way.

A somewhat undesirable feature of the result in theorem 6.4.3 is that the
optimal policy is non-interior. As a matter of fact, the increasing section of the
optimal policy function coincides with the upper boundary of the transition
possibility set which implies that, whenever x ≤ 1/β, optimal consumption is
equal to 0. Note that the same property holds also for the models constructed in
the proof of theorem 6.4.2 (as well as for the models discussed in Nishimura and
Yano (1994, 1995a)). One may therefore wonder whether chaos can be optimal
under weak discounting also in models for which the graph of the optimal
policy function is in the interior of the transition possibility set (except at the
boundary of the state space X). Nishimura et al. (1998) prove that this is
indeed the case. However, whereas Nishimura and Yano (1995b) were able to
determine the optimal policy function analytically, in Nishimura et al. (1998)
an analytical expression of the optimal policy function is not available and the
proof of the existence of optimal chaos is based on a continuity argument.

They consider the model Mλ(α, β, µ, δ) defined by d = 1 (full depreciation)
and
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Fc(xc, �c) =
[
(1/2)x−1/λ

c + (1/2)(�c/α)−1/λ
]−λ

,

Fx(xx, �x) = µλ

[
(1/2)x−1/λ

x + (1/2)(�x/β)−1/λ
]−λ

,

u(c) = c1−λ/(1 − λ).

Here λ ∈ (0, 1) and µλ = 2−λ(1 + µ1/λ). It is straightforward to see that, as
λ approaches 0, the functions Fc, Fx, and u converge to the corresponding
functions used to define M(α, β, µ, δ). It is also quite obvious that, for λ > 0,
the marginal utility at c = 0 is infinitely large and, hence, that consumption
along any optimal program starting in x > 0 must be strictly positive. Finally,
because the production functions are concave and the utility function is strictly
concave, the reduced form utility function must be strictly concave with respect
to its second argument. This implies that all optimal programs of Mλ(α, β, µ, δ)
are described by an optimal policy function. Let us denote this function by hλ.

Nishimura et al. (1998) now show that, as λ approaches 0, the optimal policy
function hλ converges uniformly to the optimal policy function of M(α, β, µ, δ),
that is, to the function h defined in (6.4). Furthermore, they appeal to a result
by Butler and Pianigiani (1978), which implies that a small perturbation of h
preserves the existence of topological chaos. Thus, the final conclusion derived
by Nishimura et al. (1998) is the following theorem.

Theorem 6.4.4. Consider the two-sector optimal growth model Mλ(α, β, µ, δ)
defined above. For every δ′ ∈ (0, 1) there exist parameter values (α, β, µ, δ, λ)
such that δ ∈ (δ′, 1) and such that the optimal policy function of Mλ(α, β, µ, δ)
exhibits topological chaos.
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